The Leading eBooks Store Online

for Kindle Fire, Apple, Android, Nook, Kobo, PC, Mac, Sony Reader ...

New to

Learn more

Notes on Coxeter Transformations and the Mckay Correspondence

Notes on Coxeter Transformations and the Mckay Correspondence
Add to cart
US$ 139.00
(If any tax is payable it will be calculated and shown at checkout.)
One of the beautiful results in the representation theory of the finite groups is McKay's theorem on a correspondence between representations of the binary polyhedral group of SU(2) and vertices of an extended simply-laced Dynkin diagram. The Coxeter transformation is the main tool in the proof of the McKay correspondence, and is closely interrelated with the Cartan matrix and Poincar?? series. The Coxeter functors constructed by Bernstein, Gelfand and Ponomarev plays a distinguished role in the representation theory of quivers. On these pages, the ideas and formulas due to J. N. Bernstein, I. M. Gelfand and V. A. Ponomarev, H.S.M. Coxeter, V. Dlab and C.M. Ringel, V. Kac, J. McKay, T.A. Springer, B. Kostant, P. Slodowy, R. Steinberg, W. Ebeling and several other authors, as well as the author and his colleagues from Subbotin's seminar, are presented in detail. Several proofs seem to be new.
Springer; January 2008
253 pages; ISBN 9783540773993
Read online, or download in secure PDF format