The Leading eBooks Store Online

for Kindle Fire, Apple, Android, Nook, Kobo, PC, Mac, Sony Reader ...

New to eBooks.com?

Learn more

Model Selection and Model Averaging

Model Selection and Model Averaging
Add to cart
US$ 64.00
(If any tax is payable it will be calculated and shown at checkout.)
Given a data set, you can fit thousands of models at the push of a button, but how do you choose the best? With so many candidate models, overfitting is a real danger. Is the monkey who typed Hamlet actually a good writer? Choosing a model is central to all statistical work with data. We have seen rapid advances in model fitting and in the theoretical understanding of model selection, yet this book is the first to synthesize research and practice from this active field. Model choice criteria are explained, discussed and compared, including the AIC, BIC, DIC and FIC. The uncertainties involved with model selection are tackled, with discussions of frequentist and Bayesian methods; model averaging schemes are presented. Real-data examples are complemented by derivations providing deeper insight into the methodology, and instructive exercises build familiarity with the methods. The companion website features Data sets and R code.
Cambridge University Press; July 2008
332 pages; ISBN 9780511421235
Read online, or download in secure PDF format