The Leading eBooks Store Online

for Kindle Fire, Apple, Android, Nook, Kobo, PC, Mac, BlackBerry ...

New to

Learn more

Minimal Surfaces

Minimal Surfaces by Ulrich Dierkes
Add to cart
US$ 129.00
"Minimal Surfaces" is the first volume of a three volume treatise on minimal surfaces (Grundlehren Nr. 339-341). Each volume can be read and studied independently of the others. The central theme is boundary value problems for minimal surfaces. The treatise is a substantially revised and extended version of the monograph Minimal Surfaces I, II (Grundlehren Nr. 295 & 296). The first volume begins with an exposition of basic ideas of the theory of surfaces in three-dimensional Euclidean space, followed by an introduction of minimal surfaces as stationary points of area, or equivalently, as surfaces of zero mean curvature. The final definition of a minimal surface is that of a non-constant harmonic mapping X: \Omega\to\R^3 which is conformally parametrized on \Omega\subset\R^2 and may have branch points. Thereafter the classical theory of minimal surfaces is surveyed, comprising many examples, a treatment of Bjorling's initial value problem, reflection principles, a formula of the second variation of area, the theorems of Bernstein, Heinz, Osserman, and Fujimoto. The second part of this volume begins with a survey of Plateau's problem and of some of its modifications.One of the main features is a new, completely elementary proof of the fact that area A and Dirichlet integral D have the same infimum in the class C(G) of admissible surfaces spanning a prescribed contour G. This leads to a new, simplified solution of the simultaneous problem of minimizing A and D in C(G), as well as to new proofs of the mapping theorems of Riemann and Korn-Lichtenstein, and to a new solution of the simultaneous Douglas problem for A and D where G consists of several closed components. Then basic facts of stable minimal surfaces are derived; this is done in the context of stable H-surfaces (i.e. of stable surfaces of prescribed mean curvature H), especially of cmc-surfaces (H = const), and leads to curvature estimates for stable, immersed cmc-surfaces and to Nitsche's uniqueness theorem and Tomi's finiteness result. In addition, a theory of unstable solutions of Plateau's problems is developed which is based on Courant's mountain pass lemma. Furthermore, Dirichlet's problem for nonparametric H-surfaces is solved, using the solution of Plateau's problem for H-surfaces and the pertinent estimates.
Springer; August 2010
698 pages; ISBN 9783642116988
Read online, or download in secure PDF format
Title: Minimal Surfaces
Author: Ulrich Dierkes; Stefan Hildebrandt; Friedrich Sauvigny; Ruben Jakob; Albrecht Kuster
Buy, download and read Minimal Surfaces (eBook) by Ulrich Dierkes; Stefan Hildebrandt; Friedrich Sauvigny; Ruben Jakob; Albrecht Kuster today!