The Leading eBooks Store Online

for Kindle Fire, Apple, Android, Nook, Kobo, PC, Mac, BlackBerry ...

New to eBooks.com?

Learn more

Low Rank Approximation

Low Rank Approximation
Add to cart
US$ 129.00
Data Approximation by Low-complexity Models details the theory, algorithms, and applications of structured low-rank approximation. Efficient local optimization methods and effective suboptimal convex relaxations for Toeplitz, Hankel, and Sylvester structured problems are presented. Much of the text is devoted to describing the applications of the theory including: system and control theory; signal processing; computer algebra for approximate factorization and common divisor computation; computer vision for image deblurring and segmentation; machine learning for information retrieval and clustering; bioinformatics for microarray data analysis; chemometrics for multivariate calibration; and psychometrics for factor analysis. Software implementation of the methods is given, making the theory directly applicable in practice. All numerical examples are included in demonstration files giving hands-on experience and exercises and MATLAB(R) examples assist in the assimilation of the theory.
Springer; November 2011
259 pages; ISBN 9781447122272
Read online, or download in secure PDF format
ISBNs
1447122275
9781447122272
9781447158363