The Leading eBooks Store Online 4,410,490 members ⚫ 1,532,108 ebooks

New to eBooks.com?

Learn more

Besselpotentiale gerader Ordnung und äquivalente Lipschitzräume. Operatorenkalkül von Approximationsverfahren fastperiodischer Funktionen

Besselpotentiale gerader Ordnung und äquivalente Lipschitzräume. Operatorenkalkül von Approximationsverfahren fastperiodischer Funktionen by Walter Trebels
Buy this eBook
US$ 54.99
(If any tax is payable it will be calculated and shown at checkout.)
Die Raume L~ der Besselpotentiale sind von einer Vielzahl von Autoren untersucht und benutzt worden, die sich z. B. mit Vervoilstandigungen (ARONSZAJN-SMITH [2]), mit stetigen Einbettungen in Besov-und Sobolevraume (ARONSZAJN-MuLLA-SZEPTYCKI [1]), mit Differenzierbarkeitsaussagen (CALDERON [11]), mit Lipschitzraumen (TAIBLESON [23]) u. a. beschaftigen. Ais unmittelbaren Ausgangspunkt dieser Abhandlung* kann man die Arbeiten von GORLICH [13], [14] ansehen, die eine Weiterentwicklung der mehrdimensionalen Satu­ rationstheorie darsteIlen, die auf BUTZER-NESSEL [7] und NESSEL [17] im FaIle 1 ~ P ~ 2 zuriickgeht. In [13], [14] wird bewiesen, daB die Raume L~ die Favardklassen ge­ wisser n-dimensionaler, radialer Approximationsverfahren, wie z. B. die Bochner-Riesz­ Mittel und das veraIlgemeinerte WeierstraBverfahren, kennzeichnen. Diese Klassen wurden in WHEEDEN [25] und TREBELS [24] durch gewisse hypersingulare Integrale charakterisiert, die man als Rieszableitungen interpretieren kann. In der eindimensionalen Theorie hat BUTZER [4], [5] (IX = 2) Charakterisierungen der Favardklassen mittels Lipschitzbedingungen abgeleitet. In der mehrdimensionalen Theorie sind jedoch entsprechende Aussagen nur fiir 1 < p < 00 bekannt (vgl. [13]); im Faile p = 1 sind diese Bedingungen zwar hinreichend, jedoch ist ihre Notwendigkeit nicht bewiesen. Unser Zugang schwiicht die letzteren Ergebnisse so ab, daB er einerseits fiir alle p­ Werte, 1 ~ P ~ 00, aquivalente Aussagen liefert und daB sich aus ihm andererseits im FaIle 1 < p < 00 mittels eines Multiplikatorensatzes von Marcinkiewicz-Mikhlin (vgl. [16; p. 232]) die bekannten Resultate wiedergewinnen lassen. Uberdies gelangen wir zu einer Erweiterung des Laplaceoperators im klassischen Rahmen.
Vieweg+Teubner Verlag; November 2013
51 pages; ISBN 9783663071341
Read online, or download in secure PDF format
Title: Besselpotentiale gerader Ordnung und äquivalente Lipschitzräume. Operatorenkalkül von Approximationsverfahren fastperiodischer Funktionen
Author: Walter Trebels
 
  • News
  • Contents
No entry found