The Leading eBooks Store Online 4,173,809 members ⚫ 1,357,844 ebooks

New to

Learn more

Clifford Theory for Group Representations

Clifford Theory for Group Representations by G. Karpilovsky
Buy this eBook
US$ 72.95
(If any tax is payable it will be calculated and shown at checkout.)
Let N be a normal subgroup of a finite group G and let F be a field. An important method for constructing irreducible FG-modules consists of the application (perhaps repeated) of three basic operations:
(i) restriction to FN.
(ii) extension from FN.
(iii) induction from FN.
This is the `Clifford Theory' developed by Clifford in 1937. In the past twenty years, the theory has enjoyed a period of vigorous development. The foundations have been strengthened and reorganized from new points of view, especially from the viewpoint of graded rings and crossed products.

The purpose of this monograph is to tie together various threads of the development in order to give a comprehensive picture of the current state of the subject. It is assumed that the reader has had the equivalent of a standard first-year graduate algebra course, i.e. familiarity with basic ring-theoretic, number-theoretic and group-theoretic concepts, and an understanding of elementary properties of modules, tensor products and fields.

Elsevier Science; May 1989
375 pages; ISBN 9780080872674
Read online, or download in secure PDF format
Title: Clifford Theory for Group Representations
Author: G. Karpilovsky