The Leading eBooks Store Online 4,410,490 members ⚫ 1,532,108 ebooks

New to

Learn more

Sheaves of Algebras over Boolean Spaces

Sheaves of Algebras over Boolean Spaces by Arthur Knoebel
Buy this eBook
US$ 129.00
(If any tax is payable it will be calculated and shown at checkout.)

Sheaves of Algebras over Boolean Spaces comprehensively covers sheaf theory as applied to universal algebra. Sheaves decompose general algebras into simpler pieces called the stalks. A classical case is commutative von Neumann regular rings, whose stalks are fields. Other classical theorems also extend to shells, a common generalization of rings and lattices.

This text presents intuitive ideas from topology such as the notion of metric space and the concept of central idempotent from ring theory. These lead to the abstract notions of complex and factor element, respectively. Factor elements are defined by identities, discovered for shells for the first time, explaining why central elements in rings and lattices have their particular form. Categorical formulations of the many representations by sheaves begin with adjunctions and move to equivalences as the book progresses, generalizing Stone’s theorem for Boolean algebras.

Half of the theorems provided in the text are new; the rest are presented in a coherent framework, starting with the most general, and proceeding to specific applications. Many open problems and research areas are outlined, including a final chapter summarizing applications of sheaves in diverse fields that were not covered earlier in the book.

This monograph is suitable for graduate students and researchers, and it will serve as an excellent reference text for those who wish to learn about sheaves of algebras.

Birkhäuser Boston; December 2011
335 pages; ISBN 9780817646424
Read online, or download in secure PDF format
Title: Sheaves of Algebras over Boolean Spaces
Author: Arthur Knoebel
  • News
  • Contents
No entry found