The Leading eBooks Store Online 4,272,009 members ⚫ 1,419,367 ebooks

New to

Learn more

Invertibility and Singularity for Bounded Linear Operators

Invertibility and Singularity for Bounded Linear Operators by Robin Harte
Buy this eBook
US$ 39.95
(If any tax is payable it will be calculated and shown at checkout.)
This introduction to functional analysis focuses on the types of singularity that prevent an operator from being invertible. The presentation is based on the open mapping theorem, Hahn-Banach theorem, dual space construction, enlargement of normed space, and Liouville's theorem. Suitable for advanced undergraduate and graduate courses in functional analysis, this volume is also a valuable resource for researchers in Fredholm theory, Banach algebras, and multiparameter spectral theory.
The treatment develops the theory of open and almost open operators between incomplete spaces. It builds the enlargement of a normed space and of a bounded operator and sets up an elementary algebraic framework for Fredholm theory. The approach extends from the definition of a normed space to the fringe of modern multiparameter spectral theory and concludes with a discussion of the varieties of joint spectrum. This edition contains a brief new Prologue by author Robin Harte as well as his lengthy new Epilogue, "Residual Quotients and the Taylor Spectrum."
Dover republication of the edition published by Marcel Dekker, Inc., New York, 1988.
Dover Publications; November 2016
624 pages; ISBN 9780486817880
Read online, or download in secure EPUB
Title: Invertibility and Singularity for Bounded Linear Operators
Author: Robin Harte
  • News
  • Contents
No entry found