Advanced Applications in Remote Sensing of Agricultural Crops and Natural Vegetation (2nd ed.)

Prasad S. Thenkabail,

Advanced Applications in Remote Sensing of Agricultural Crops and Natural Vegetation
 
 

Written by leading global experts, including pioneers in the field, the four-volume set on Hyperspectral Remote Sensing of Vegetation, Second Edition, reviews existing state-of-the-art knowledge, highlights advances made in different areas, and provides guidance for the appropriate use of hyperspectral data in the study and management of agricultural crops and natural vegetation.

Volume IV, Advanced Applications in Remote Sensing of Agricultural Crops and Natural Vegetation discusses the use of hyperspectral or imaging spectroscopy data in numerous specific and advanced applications, such as forest management, precision farming, managing invasive species, and local to global land cover change detection. It emphasizes the importance of hyperspectral remote sensing tools for studying vegetation processes and functions as well as the appropriate use of hyperspectral data for vegetation management practices. The concluding chapter provides readers with useful guidance on the highlights and essence of Volume IV through the editors’ perspective.

Key Features of Volume IV:

  • Guides readers to harness the capabilities of the most recent advances in applying hyperspectral remote sensing technology to the study of terrestrial vegetation.
  • Includes specific applications on agriculture, crop management practices, study of crop stress and diseases, crop characteristics based on inputs (e.g., nitrogen, irrigation), study of vegetation impacted by heavy metals, gross and net primary productivity studies, light use efficiency studies, crop water use and actual evapotranspiration studies, phenology monitoring, land use and land cover studies, global change studies, plant species detection, wetland and forest characterization and mapping, crop productivity and crop water productivity mapping, and modeling.
  • Encompasses hyperspectral or imaging spectroscopy data in narrow wavebands used across visible, red-edge, near-infrared, far-infrared, shortwave infrared, and thermal portions of the spectrum.
  • Explains the implementation of hyperspectral remote sensing data processing mechanisms in a standard, fast, and efficient manner for their applications.
  • Discusses cloud computing to overcome hyperspectral remote sensing massive big data challenges.
  • Provides hyperspectral analysis of rocky surfaces on the earth and other planetary systems.


  • ;
  • ISBN:
  • Edition:
  • Title:
  • Series:
  • Author:
  • Imprint:
  • Language:

In The Press


About The Author


Customer Reviews

Verified Buyer

Read online

If you’re using a PC or Mac you can read this ebook online in a web browser, without downloading anything or installing software.

Download file formats

This ebook is available in file types:

This ebook is available in:

After you've bought this ebook, you can choose to download either the PDF version or the ePub, or both.

DRM Free

The publisher has supplied this book in DRM Free form with digital watermarking.

Required software

You can read this eBook on any device that supports DRM-free EPUB or DRM-free PDF format.

Digital Rights Management (DRM)

The publisher has supplied this book in encrypted form, which means that you need to install free software in order to unlock and read it.

Required software

To read this ebook on a mobile device (phone or tablet) you'll need to install one of these free apps:

To download and read this eBook on a PC or Mac:

  • Adobe Digital Editions (This is a free app specially developed for eBooks. It's not the same as Adobe Reader, which you probably already have on your computer.)

Limits on printing and copying

The publisher has set limits on how much of this ebook you may print or copy. See details.

  • {{ format_drm_information.format_name }} unrestricted {{ format_drm_information.format_name }} {{format_drm_information.page_percent}}% pages every day{{format_drm_information.interval}} days {{ format_drm_information.format_name }} off
Read Aloud
  • {{ read_aloud_information.format_name }} on {{ read_aloud_information.format_name }} off
Subject categories
  •  > 
ISBNs