Global Analysis on Foliated Spaces (2nd ed.)

Calvin C. Moore,

Global Analysis on Foliated Spaces
 
 
Foliated spaces look locally like products, but their global structure is generally not a product, and tangential differential operators are correspondingly more complex. In the 1980s, Alain Connes founded what is now known as noncommutative geometry and topology. One of the first results was his generalization of the Atiyah-Singer index theorem to compute the analytic index associated with a tangential (pseudo) - differential operator and an invariant transverse measure on a foliated manifold, in terms of topological data on the manifold and the operator. This second edition presents a complete proof of this beautiful result, generalized to foliated spaces (not just manifolds). It includes the necessary background from analysis, geometry, and topology. The present edition has improved exposition, an updated bibliography, an index, and additional material covering developments and applications since the first edition came out, including the confirmation of the Gap Labeling Conjecture of Jean Bellissard.


  • ;
  • ISBN:
  • Edition:
  • Title:
  • Series:
  • Author:
  • Imprint:
  • Language:

In The Press


About The Author


Customer Reviews

Verified Buyer

Read online

If you’re using a PC or Mac you can read this ebook online in a web browser, without downloading anything or installing software.

Download file formats

This ebook is available in file types:

This ebook is available in:

After you've bought this ebook, you can choose to download either the PDF version or the ePub, or both.

DRM Free

The publisher has supplied this book in DRM Free form with digital watermarking.

Required software

You can read this eBook on any device that supports DRM-free EPUB or DRM-free PDF format.

Digital Rights Management (DRM)

The publisher has supplied this book in encrypted form, which means that you need to install free software in order to unlock and read it.

Required software

To read this ebook on a mobile device (phone or tablet) you'll need to install one of these free apps:

To download and read this eBook on a PC or Mac:

  • Adobe Digital Editions (This is a free app specially developed for eBooks. It's not the same as Adobe Reader, which you probably already have on your computer.)

Limits on printing and copying

The publisher has set limits on how much of this ebook you may print or copy. See details.

  • {{ format_drm_information.format_name }} unrestricted {{ format_drm_information.format_name }} {{format_drm_information.page_percent}}% every {{format_drm_information.interval}} days {{ format_drm_information.format_name }} off
Read Aloud
  • {{ read_aloud_information.format_name }} on {{ read_aloud_information.format_name }} off
Subject categories
  •  > 
ISBNs