Spectral Decomposition and Eisenstein Series

A Paraphrase of the Scriptures

C. Moeglin,

Spectral Decomposition and Eisenstein Series: A Paraphrase of the Scriptures
 
 
The decomposition of the space L2(G(Q)\G(A)), where G is a reductive group defined over Q and A is the ring of adeles of Q, is a deep problem at the intersection of number and group theory. Langlands reduced this decomposition to that of the (smaller) spaces of cuspidal automorphic forms for certain subgroups of G. This book describes this proof in detail. The starting point is the theory of automorphic forms, which can also serve as a first step towards understanding the Arthur–Selberg trace formula. To make the book reasonably self-contained, the authors also provide essential background in subjects such as: automorphic forms; Eisenstein series; Eisenstein pseudo-series, and their properties. It is thus also an introduction, suitable for graduate students, to the theory of automorphic forms, the first written using contemporary terminology. It will be welcomed by number theorists, representation theorists and all whose work involves the Langlands program.


  • ;
  • ISBN:
  • Edition:
  • Title:
  • Series:
  • Author:
  • Imprint:

In The Press


About The Author


Customer Reviews

Verified Buyer

Read online

If you’re using a PC or Mac you can read this ebook online in a web browser, without downloading anything or installing software.

Download file formats

This ebook is available in file types:

This ebook is available in:

After you've bought this ebook, you can choose to download either the PDF version or the ePub, or both.

DRM Free

The publisher has supplied this book in DRM Free form with digital watermarking.

Required software

You can read this eBook on any device that supports DRM-free EPUB or DRM-free PDF format.

Digital Rights Management (DRM)

The publisher has supplied this book in encrypted form, which means that you need to install free software in order to unlock and read it.

Required software

To read this ebook on a mobile device (phone or tablet) you'll need to install one of these free apps:

To download and read this eBook on a PC or Mac:

  • Adobe Digital Editions (This is a free app specially developed for eBooks. It's not the same as Adobe Reader, which you probably already have on your computer.)

Limits on printing and copying

The publisher has set limits on how much of this ebook you may print or copy. See details.

  • {{ format_drm_information.format_name }} unrestricted {{ format_drm_information.format_name }} {{format_drm_information.page_percent}}% every {{format_drm_information.interval}} days {{ format_drm_information.format_name }} off
Read Aloud
  • {{ read_aloud_information.format_name }} on {{ read_aloud_information.format_name }} off
Subject categories
  •  > 
ISBNs