Get the definitive handbook for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.10 and pandas 1.4, the third edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You'll learn the latest versions of pandas, NumPy, and Jupyter in the process.
Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It's ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub.
Use the Jupyter notebook and IPython shell for exploratory computingLearn basic and advanced features in NumPyGet started with data analysis tools in the pandas libraryUse flexible tools to load, clean, transform, merge, and reshape dataCreate informative visualizations with matplotlibApply the pandas groupby facility to slice, dice, and summarize datasetsAnalyze and manipulate regular and irregular time series dataLearn how to solve real-world data analysis problems with thorough, detailed examples
You can read this ebook online in a web browser, without downloading anything or installing software.
This ebook is available in file types:
This ebook is available in:
After you've bought this ebook, you can choose to download either the PDF version or the ePub, or both.
The publisher has supplied this book in DRM Free form with digital watermarking.
You can read this eBook on any device that supports DRM-free EPUB or DRM-free PDF format.
The publisher has supplied this book in encrypted form, which means that you need to install free software in order to unlock and read it.
To read this ebook on a mobile device (phone or tablet) you'll need to install one of these free apps:
To download and read this eBook on a PC or Mac:
The publisher has set limits on how much of this ebook you may print or copy. See details.