Master the math needed to excel in data science, machine learning, and statistics. In this book author Thomas Nield guides you through areas like calculus, probability, linear algebra, and statistics and how they apply to techniques like linear regression, logistic regression, and neural networks. Along the way you'll also gain practical insights into the state of data science and how to use those insights to maximize your career.
Learn how to:
Use Python code and libraries like SymPy, NumPy, and scikit-learn to explore essential mathematical concepts like calculus, linear algebra, statistics, and machine learningUnderstand techniques like linear regression, logistic regression, and neural networks in plain English, with minimal mathematical notation and jargonPerform descriptive statistics and hypothesis testing on a dataset to interpret p-values and statistical significanceManipulate vectors and matrices and perform matrix decompositionIntegrate and build upon incremental knowledge of calculus, probability, statistics, and linear algebra, and apply it to regression models including neural networksNavigate practically through a data science career and avoid common pitfalls, assumptions, and biases while tuning your skill set to stand out in the job market
You can read this ebook online in a web browser, without downloading anything or installing software.
This ebook is available in file types:
This ebook is available in:
After you've bought this ebook, you can choose to download either the PDF version or the ePub, or both.
The publisher has supplied this book in DRM Free form with digital watermarking.
You can read this eBook on any device that supports DRM-free EPUB or DRM-free PDF format.
The publisher has supplied this book in encrypted form, which means that you need to install free software in order to unlock and read it.
To read this ebook on a mobile device (phone or tablet) you'll need to install one of these free apps:
To download and read this eBook on a PC or Mac:
The publisher has set limits on how much of this ebook you may print or copy. See details.